

KODE OG UDVIKLINGSMILJØ

Dato: 02-02-2026

Status: Final

Version: 1.2

Projekt TALT: Talegenkendelse og tekstklassifikation

2

Formål
At give en samlet oversigt over den kode og de tekniske komponenter, der er udviklet i projektet –
herunder hjælpeværktøjer, scripts, pre-processering og opsætning. Dokumentet skal understøtte

genbrug, transparens og samarbejde med udviklermiljøer.

Projekt TALT: Talegenkendelse og tekstklassifikation

3

Indholdsfortegnelse
Formål .. 2

1. Introduktion .. 4

2. Udviklingsværktøjer, miljøstyring og kodehåndtering ... 5
2.1 Kodesprog samt centrale frameworks og biblioteker .. 5

2.1.1 Afprøvningsklienter ... 5
2.1.2 Valideringsklient .. 5
2.1.3 Data science .. 5
2.1.4 Database .. 6

2.2. Udviklingsmiljøer, afhængigheder og projektversionering .. 6
2.3. Deployment .. 6

3. Repositories .. 7

3.1 TALT-UI ... 7
3.2 TALT-Forretning ... 8
3.3 Sygeplejefaglig udredning .. 8
3.4 UC2 ... 8
3.5 Speechcomponent ... 8
3.6 SharedComponents ... 8
3.7 test-server-deployment og prod-server-deployment .. 9

4. Opsætning og brug kode .. 10

4.1 TALT Afprøvningsklient .. 10
4.2 Valideringsklient .. 10
4.3. Data generering .. 10

Projekt TALT: Talegenkendelse og tekstklassifikation

4

1. Introduktion
Vi har i projektet arbejdet med 3 områder for værdiskabelse i sygeplejen, kaldet use cases, og har til

hver af dem udviklet en løsning baseret på talegenkendelse, tekstklassificering og/eller generative

tekst modeller. Løsningerne har det til fælles at de forsøger at afhjælpe byrden forbundet med at

generere eller orientere sig i journaldata. Disse løsninger har vi gennem afprøvninger vist frem til

sygeplejefagligt personale fra et bredt udsnit af kommuner.

Projektet har arbejdet med forskellige muligheder for værdiskabelse i syge- og hjemmeplejen samlet i

3 use cases (UC). Følgende er use cases overskrift, efterfulgt af en kort beskrivelse:

 UC1: Sygeplejefaglig udredning

Støtte til oprettelse af sygeplejetilstandsnotater på baggrund af en sygeplejefaglig udredningssamtale

(SFU-samtale) mellem borger og sygeplejerske. Støtten ydes gennem udkast til notater baseret på

samtalens indhold.

 UC2: Opsummering af borgerjournal

Opsummering af borgerjournal til støtte ved borgerbesøg udført af hhv. Sygeplejersker (SPL) og

sundheds- og omsorgsassistenter og -hjælpere (SSA/SSH).

 UC3: Indtaling af besøgsbeskrivelse

Støtte til oprettelse og opdatering af besøgsbeskrivelser til hjælp med hjemmebesøg udført af

SSA/SSH. Besøgsbeskrivelserne oprettelse på baggrund af en indtaling.

For mere information om arbejdet med at definere, afgrænse og afprøve projektets use cases se

dokument “Use cases og afprøvning”

Dette dokument beskriver de vigtigste udviklingsværktøjer, frameworks og kodebiblioteker anvendt i

projektet i forbindelse med den tekniske udvikling af løsninger. Der vil desuden blive præsenteret et

overblik over, hvilke kodebaser der er oprettet i projektet, med overordnede beskrivelser af hvert

enkelt samt beskrivelse af, hvordan koden opsættes og bruges.

For en mere detaljeret beskrivelse af mappe- og kodestrukturen og funktionaliteten for hvert kode

repository, henviser vi til README-filerne i de forskellige kodebaser, der er udgivet på GitHub.

Projekt TALT: Talegenkendelse og tekstklassifikation

5

2. Udviklingsværktøjer, miljøstyring og kodehåndtering
I dette afsnit vil vi kort gennemgå de centrale kodesprog, frameworks og biblioteker anvendt i
projektet.

2.1 Kodesprog samt centrale frameworks og biblioteker

2.1.1 Afprøvningsklienter
Til afprøvningsklienterne i projektet bruges Angular 17 som frontend framework til at rendere UI’en

og styre app-logikken. Klienterne bygger derfor på Angular komponenter bygget i Typescript, med

Node.js som miljø under runtime og npm som pakkemanager.

Backenden ligger I Talt-Forretning-repositoriet og består af et RESTful API udviklet i Python og bygget

med FastAPI frameworket. Den bruger uvicorn som ASGI-web server og bearer token authentication,

mens input- og output data bliver valideret og formateret med Pydantic objekter.

Klienterne er bygget med det formål at kunne foretage afprøvninger af AI funktionaliteten, men ikke til
at kunne integrere ind i et eksisterende EOJ-system.

2.1.2 Valideringsklient
Frontenden i valideringsklienten er bygget med Dash-frameworket i Python. Den kører med Flask som

webapplikation, uWSGI som applikationsserver og Nginx som reverse proxy med SSL-certifikat.

Backenden i appen er, ligesom vores afprøvningsklient, vores API i TALT-Forretning, hvor der ligger

en service lavet specifikt til at servicere valideringsklienten. Backenden bliver kaldt med HTTPX-
biblioteket som HTTP-klient, mens navigationen mellem siderne bliver håndteret med ’Location’-

komponenten i Dash Core Components-biblioteket. De indbyggede elementer i Dash-biblioteket er

blevet kombineret med egne brugerdefinerede css-klasser mens også komponenter fra Dash

Bootstrap Component biblioteket er blevet brugt til at få færdigt-designede komponenter heriblandt

knapper, dialogbokse, spinnere og advarselsbeskeder.

2.1.3 Data science
Projektets data science-komponenter omfatter flere forskellige moduler udviklet i Python. Det gælder
for talegenkendelses-, kategoriserings- og opsummeringskomponenten, at de alle bliver eksponeret

som RESTful API’er bygget med FastAPI og Uvicorn som ASGI-webserver til understøtning af

afprøvningssystemerne.

Talegenkendelseskomponenten anvender SYSTRANs re-implementering af OpenAI’s Whisper-model,
Faster Whisper, til transskribering af lyd, via Cloudflare Workers AI. Inden lyddata behandles af

modellen, indlæses og gensamples de med Torchaudio for at sikre den korrekte frekvens-input til

modellen. Selve transskriberingen sker

Klassifikationsmodulet er opbygget med SetFit-frameworket, som håndterer træning af modellen,
mens SentenceTransformers anvendes til indlæsning af embedding-modeller og står for

repræsentationen af tekstdata. Pre-processering foretages med Pandas, og Pydantic bruges til at

validere og strukturere inputdata. Evalueringen af modellerne udføres med Scikit-learns metrics-

modul.

Projekt TALT: Talegenkendelse og tekstklassifikation

6

Opsummeringskomponenten benytter Large Language Models deployeret i Microsoft Azure, hvor

Azure AI-bibliotekerne anvendes til at generere tekstopsummeringer via Ollama-modellen og til at

håndtere autentifikation mod Azure-servicen.

Den syntetiske datagenerering bygger på et system af prompt-funktioner, som kombineres til fleksible
prompt-metoder. Nogle funktioner henter eksempeldata fra databasen via SQLAlchemy, mens

samtaler og tekstgenerering udføres med OpenAI-modeller hostet i Azure, der indlæses med

AzureOpenAI-pakken fra OpenAI-modulet.

Projektets UC2 indeholder en journal-parser, der konverterer journaldata fra Excel til JSON. Denne
komponent benytter Pandas til dataindlæsning og -manipulation samt regular expressions (re-

modulet) til at udtrække specifikke informationer fra tekstfelterne.

2.1.4 Database
Projektet bruger relationelle PostgreSQL-databaser til struktureret at organisere og håndtere data i

projektet. Psycopg2-biblioteket bruges til at oprette tabeller, køre migreringer og sql-kommandoer og

håndtere fejl. Med få undtagelser, er også SQLAlchemy anvendt til hurtig indlæsning af data til de
eksperimentelle data science komponenter, der ikke bruges i produktion.

2.2. Udviklingsmiljøer, afhængigheder og projektversionering
Projektet benytter Poetry til at håndtere udviklingsmiljøer, afhængigheder og projektversionering.

Poetry sikrer et ensartet setup på tværs af udviklere ved automatisk at oprette virtuelle miljøer, styre

pakkernes versioner og holder repositoriernes version opdateret via pyproject.toml og poetry.lock.

UC3-komponenten administreres i øjeblikket via et manuelt venv uden pyproject.toml; dokumentér
derfor, hvordan miljøet aktiveres, inden man kører uvicorn.

2.3. Deployment
Projektet bruger Docker til containerisering af applikationerne og deres afhængigheder. Færdige

Docker-images bygges og skubbes til et Sonatype Nexus Registry, hvor de versioneres. Til

deployment anvendes Docker Compose, som henter de versionerede images fra Nexus og starter de
valgte services på serveren.

Deployment håndteres via de Docker Compose-filer, der følger med i service-repositorierne (fx talt-

forretning/Docker/docker-compose.yml, talt-ui/docker-compose.yml og

speechcomponent/docker/docker-compose.smoketest.yml). Når nye versioner bygges og pushes til
Nexus, opdateres tags direkte i disse filer, og stakken startes lokalt eller på serveren uden brug af

særskilte test-/prod-repositorier.

Projekt TALT: Talegenkendelse og tekstklassifikation

7

3. Repositories
Kodebasen er opgjort af en række forskellige repositorier, se figur 1 for et overblik. I dette afsnit vil vi

gennemgå hvert repositorie og kort beskrive formålet med dets kode.

Figur 1: Oversigt over projektets repositorier

Hvert repositorie understøtter forskellige behov. De ydre kasser indikerer repositorier og de indre kasser indikerer

komponenter.

3.1 TALT-UI
Repositoriet indeholder alle komponenter og services tilhørende frontenden af vores

afprøvningssystem. Det er en samlet frontend applikation, men med en mappestruktur, hvor

komponenterne tilhørende hver use-case er separeret i egne mapper, ligesom

navigationskomponenten og loginkomponenten har fået egne mapper.

Projekt TALT: Talegenkendelse og tekstklassifikation

8

3.2 TALT-Forretning
TALT-Forretning er projektets forretningslag, der står for at håndtere kommunikationen til og fra

TALT-forretnings database samt opsætning og opdatering af databasen. Det er et RESTAPI, hvor

endpoint ruterne er opdelt i separate filer efter funktionalitet mens services, funktioner, datamodeller

og dataadgangslag er samlet i undermapper ud fra komponenten de understøtter; hhv. UC1, UC2,
UC3 og valideringsappen.

3.3 Sygeplejefaglig udredning
Her er samlet komponenter, som primært er knyttet til den sygeplejefaglig udredning (UC1). Der er i

repositoriet placeret følgende komponenter med tilhørende beskrivelse:

- Kategoriseringskomponenten

Kategoriseringskomponenten består af klassifikations-API’et, og udviklingskoden, der står for at træne

og evaluere kategoriseringsmodellerne.

- Opsummeringskomponenten (forretningslag)

Her er API’et til opsummering placeret sammen med alle nødvendige funktionaliteter for at kunne

generere opsummeringer under afprøvning, heriblandt modelprompts.

- Valideringsapp

Frontenden til valideringsappen.

- Baseline

Evaluering af komponenterne for talegenkendelse, kategorisering og opsummering under test og

afprøvning.

- LLM-judge

Indeholder LLM-judge brugt til at evaluere kvaliteten af UC1-opsummeringer.

3.4 UC2
UC2-repositoriet indeholder koden til klargøring af data og genereringen af opsummeringer til
afprøvning og evalueringen af afprøvningsresultaterne. Der er derfor placeret journal-parsing og

databasekode til at indlæse journaler fra Excel til databasen og selvstændige notebooks til generering

af opsummeringer og evalueringen af afprøvningen.

3.5 Speechcomponent
Indeholder Fast-API’et, der kan transskribere samtaler og tilhørende services, der understøtter

processeringen og transskriberingen af lydfilerne.

3.6 SharedComponents
SharedComponents er stedet hvor moduler, der bruges på tværs af respositorier, er placeret. Det

drejer sig blandt andet om databasemanageren og datamodeller. Databasemanageren er et

Projekt TALT: Talegenkendelse og tekstklassifikation

9

postgreSQL-databasemodul, der sørger for connection, fetching af data og eksekvering af statements.

Datamodellerne består af Pydantic dataklasser brugt generelt i data science-komponenterne.

Modulet til generering af syntetisk data er også placeret her, og er mappeopdelt efter typen af

datagenerering.

3.7 test-server-deployment og prod-server-deployment
To repositorier, der hver indeholder en docker-compose-fil til at køre afprøvningsklienten og

valideringsappen, og køres på hhv test- og prod-serveren. De tidligere test-server-deployment og

prod-server-deployment repos er udfaset. Deployments udføres nu via de Docker Compose-filer, som

ligger i de enkelte kodebaser (fx talt-ui/docker-compose.yml, talt-forretning/Docker/docker-
compose.yml, sundhedsfagligudredning/validation_app/docker/docker-compose.smoketest.yml).

Projekt TALT: Talegenkendelse og tekstklassifikation

10

4. Opsætning og brug kode

4.1 TALT Afprøvningsklient
Appen køres lokalt ved at bygge og køre Docker-billederne for talt-ui, talt-forretning og databasen.

Dockerbillederne kan køres samlet i et kald ved at køre docker-compose-filen på talt-forretning.

For deployment til test-/prod-serveren, bygges og pushes Dockerbillederne med det rette tag (der

hentes fra versionscontrolleren i pyproject.toml på de respektive repositories), som herefter zippes og
pushes til Nexus-serveren. Tags skal herefter opdateres i docker-compose filen til de nye versionstag,

hvorefter der logges ind på test-/prod-serveren via SSH. Herfra hentes docker-billederne ned fra

Nexus og køres med docker compose-filen lavet til det pågældende miljø. Der er lavet separate

docker-compose filer til hhv. test og produktion, så der kan testes i testmiljøet før deploy til

produktion, og vi kan spore os tilbage til tidligere versioner, hvis der opstår fejl.

TALT-afprøvningsklienten køres lokalt ved at bygge og køre dets Dockerbillede. Det køres via Angular

CLI, installer afhængighederne med npm install, starter udviklingsserveren med npm start, og bruger

npm run json-server hvis der er behov for mock-API-data. Docker/Compose-scripts kan fortsat bruges

til integrerede miljøer, men er ikke påkrævet for lokal udvikling.

4.2 Valideringsklient
Valideringsklienten køres lokalt ved at bygge og køre dets Dockerbillede. Det deployes på test-/prod-

serveren efter samme fremgangsmåde som afprøvningsklienten. Valideringsklienten

(sundhedsfagligudredning/validation_app) startes lokalt via poetry install efterfulgt af make build

start, eller via ./scripts/00-build-local.sh der bygger og kører Docker-containere. App’en kalder talt-

forretning-API’et gennem httpx i src/app/utils/api_service.py.

4.3. Data generering
Datagenereringen er lavet som konfigurerbare Python-scripts, der ud fra konfigurationerne i

config.toml, genererer det ønskede data og skriver det til databasen.

Datagenereringen styres af scripts i sharedcomponents/generering_af_syntetiske_samtaler. Prompt-

metoder registreres via PROMPT_METHODS i prompt_methods.py, og hver metode kan vælges i

config.toml. Samtaler genereres ved hjælp af Azure OpenAI (AzureOpenAI-klienten) med health

condition-data hentet via DataManager.

Genereringerne bygger på promtps, der ligger samlet i en Python-klasse, og kombineret til forskellige

prompt-metoder i en tilsvarende python-klasse. Disse metoder bliver registreret i et dictionary med en

decorators, så de er tilgængelige under datagenereringen. Fra ens config-fil kan man derfra vælge

den ønskede prompt-metode, men også andre konfigurationer skal vælges som fx længden af en
ønsket syntetisk samtale og antallet af helbredstilstande. Når ens konfigurationer er valgt, kan Python-

filen der genererer og skriver til databasen eksekveres.

