KODE OG UDVIKLINGSMILJ®

Dato: 02-02-2026

Status: Final

a:‘;",tvﬁ‘o
: . systEmaric @hatore il s, 1AL o
Projekt TALT: Talegenkendelse og tekstklassifikation (6 L = O

Formal

At give en samlet oversigt over den kode og de tekniske komponenter, der er udviklet i projektet —
herunder hjeelpeveerktgjer, scripts, pre-processering og opseetning. Dokumentet skal understgtte
genbrug, transparens og samarbejde med udviklermiljger.

" 4
SYSTEMATIC @) Ralbore B e !\i!ﬁ

Kommune =< o

Projekt TALT: Talegenkendelse og tekstklassifikation = e nn®

Indholdsfortegnelse
FOIMAL ...ttt et bbbt b bt 2
To INEPOAUKLION. ... bbb bbb 4
2. Udviklingsveerktgjer, miljgstyring og kodehandtering..........ccoooviiiniiiiin, 5
2.1 Kodesprog samt centrale frameworks og biblioteker ... 5
2.1.1 AfprovningSKHENter ... 5
2.1.2 ValideringsKlient ... 5
2.1.3 Data SCIEBNCE......cuiviiiiiiii bbb bbb 5
2.1.4 DAtabase. ... bbb 6
2.2. Udviklingsmiljger, afhazengigheder og projektversionering ..., 6
2.3, DEPIOYMENT......oiiiiiii s 6
. REPOSIIONIES cuteiiecitictectee ettt sttt e st st e st e s e e sae et e s be st e st e e s b e e be e rteea b e et e b e e be et e e aeeaaeeate st e et e et e et esraenraenrean 7
BuT TALT UL ottt ettt bbbttt ettt bbbt 7
3.2 TALT-FOITEENINGcocvvieiiireerete ettt st ettt sttt a bbb senene 8
3.3 Sygeplejefaglig Udredningccccoceeinrnrnncceee ettt ettt 8
Bi4 UC2 ...ttt s ettt et 8
3.5 SPEECHCOMPONENL ..ottt bbbttt ta s bbbt 8
3.6 SharedCOmMPONENLS.........cccovririireieieiceeetrr ettt ettt a e e bbb senesene 8
3.7 test-server-deployment og prod-server-deployment..............cccceceeeernrnerneerercneeeenenenenensereneenenenene 9
4, OPSEINING OZ DIUG KOUE ...c..eiiiiiiirieriirietetentesesiesreeesestestestessessessesssesesssessessessensessesssessessessessassessessessssssessenses 10
4.1 TALT AfpravningsKIi@nt ... e rens 10
4.2 ValideringSKIENT ..o s 10
4.3. Data gENEIEriNg ... e 10

sysTEmATIC @ aavore i i
Projekt TALT: Talegenkendelse og tekstklassifikation L) Kammine = it

1. Introduktion

Vi har i projektet arbejdet med 3 omrader for veerdiskabelse i sygeplejen, kaldet use cases, og har til
hver af dem udviklet en Igsning baseret pa talegenkendelse, tekstklassificering og/eller generative
tekst modeller. Lasningerne har det til feelles at de forsgger at afhjeelpe byrden forbundet med at
generere eller orientere sig i journaldata. Disse Igsninger har vi gennem afprgvninger vist frem til
sygeplejefagligt personale fra et bredt udsnit af kommuner.

Projektet har arbejdet med forskellige muligheder for veerdiskabelse i syge- og hjemmeplejen samlet i
3 use cases (UC). Fglgende er use cases overskrift, efterfulgt af en kort beskrivelse:

e UC1: Sygeplejefaglig udredning

Stotte til oprettelse af sygeplejetilstandsnotater pa baggrund af en sygeplejefaglig udredningssamtale
(SFU-samtale) mellem borger og sygeplejerske. Statten ydes gennem udkast til notater baseret pa
samtalens indhold.

e UC2: Opsummering af borgerjournal

Opsummering af borgerjournal til stette ved borgerbesgg udfert af hhv. Sygeplejersker (SPL) og
sundheds- og omsorgsassistenter og -hjaelpere (SSA/SSH).

e UC3: Indtaling af besagsbeskrivelse

Stotte til oprettelse og opdatering af besggsbeskrivelser til hjaelp med hjemmebesgg udfert af
SSA/SSH. Besggsbeskrivelserne oprettelse pa baggrund af en indtaling.

For mere information om arbejdet med at definere, afgreense og afprgve projektets use cases se
dokument “Use cases og afprgvning”

Dette dokument beskriver de vigtigste udviklingsveerktgjer, frameworks og kodebiblioteker anvendt i
projektet i forbindelse med den tekniske udvikling af I@sninger. Der vil desuden blive praesenteret et
overblik over, hvilke kodebaser der er oprettet i projektet, med overordnede beskrivelser af hvert
enkelt samt beskrivelse af, hvordan koden opsaettes og bruges.

For en mere detaljeret beskrivelse af mappe- og kodestrukturen og funktionaliteten for hvert kode
repository, henviser vi til README-filerne i de forskellige kodebaser, der er udgivet pa GitHub.

systemaric @Qaaters,, ol . 1BL ;

Projekt TALT: Talegenkendelse og tekstklassifikation = e nn®

2.Udviklingsveerktgjer, miljgstyring og kodehandtering
| dette afsnit vil vi kort gennemga de centrale kodesprog, frameworks og biblioteker anvendt i
projektet.

2.1 Kodesprog samt centrale frameworks og biblioteker

2.1.1 Afprgvningsklienter

Til afprevningsklienterne i projektet bruges Angular 17 som frontend framework til at rendere Ul'en
og styre app-logikken. Klienterne bygger derfor pa Angular komponenter bygget i Typescript, med
Node.js som miljg under runtime og npm som pakkemanager.

Backenden ligger | Talt-Forretning-repositoriet og bestar af et RESTful APl udviklet i Python og bygget
med FastAP| frameworket. Den bruger uvicorn som ASGl-web server og bearer token authentication,
mens input- og output data bliver valideret og formateret med Pydantic objekter.

Klienterne er bygget med det formal at kunne foretage afprgvninger af Al funktionaliteten, men ikke til
at kunne integrere ind i et eksisterende EOJ-system.

2.1.2 Valideringsklient

Frontenden i valideringsklienten er bygget med Dash-frameworket i Python. Den kgrer med Flask som
webapplikation, uWSGI som applikationsserver og Nginx som reverse proxy med SSL-certifikat.
Backenden i appen er, ligesom vores afprgvningsklient, vores APl i TALT-Forretning, hvor der ligger
en service lavet specifikt til at servicere valideringsklienten. Backenden bliver kaldt med HTTPX-
biblioteket som HTTP-klient, mens navigationen mellem siderne bliver handteret med 'Location’-
komponenten i Dash Core Components-biblioteket. De indbyggede elementer i Dash-biblioteket er
blevet kombineret med egne brugerdefinerede css-klasser mens ogsa komponenter fra Dash
Bootstrap Component biblioteket er blevet brugt til at fa feerdigt-designede komponenter heriblandt
knapper, dialogbokse, spinnere og advarselsbeskeder.

2.1.3 Data science

Projektets data science-komponenter omfatter flere forskellige moduler udviklet i Python. Det geelder
for talegenkendelses-, kategoriserings- og opsummeringskomponenten, at de alle bliver eksponeret
som RESTful APl'er bygget med FastAPI og Uvicorn som ASGI-webserver til understgtning af
afprgvningssystemerne.

Talegenkendelseskomponenten anvender SYSTRANSs re-implementering af OpenAl’'s Whisper-model,
Faster Whisper, til transskribering af lyd, via Cloudflare Workers Al. Inden lyddata behandles af
modellen, indleeses og gensamples de med Torchaudio for at sikre den korrekte frekvens-input til
modellen. Selve transskriberingen sker

Klassifikationsmodulet er opbygget med SetFit-frameworket, som handterer treening af modellen,
mens SentenceTransformers anvendes til indleesning af embedding-modeller og star for
repreesentationen af tekstdata. Pre-processering foretages med Pandas, og Pydantic bruges til at
validere og strukturere inputdata. Evalueringen af modellerne udfgres med Scikit-learns metrics-
modul.

systemaric @Qaaters,, ol . 1BL ;

Projekt TALT: Talegenkendelse og tekstklassifikation = e nn®

Opsummeringskomponenten benytter Large Language Models deployeret i Microsoft Azure, hvor
Azure Al-bibliotekerne anvendes til at generere tekstopsummeringer via Ollama-modellen og til at
handtere autentifikation mod Azure-servicen.

Den syntetiske datagenerering bygger pa et system af prompt-funktioner, som kombineres til fleksible
prompt-metoder. Nogle funktioner henter eksempeldata fra databasen via SQLAlchemy, mens
samtaler og tekstgenerering udfgres med OpenAl-modeller hostet i Azure, der indleeses med
AzureOpenAl-pakken fra OpenAl-modulet.

Projektets UC2 indeholder en journal-parser, der konverterer journaldata fra Excel til JSON. Denne
komponent benytter Pandas til dataindlaesning og -manipulation samt regular expressions (re-
modaulet) til at udtreekke specifikke informationer fra tekstfelterne.

2.1.4 Database

Projektet bruger relationelle PostgreSQL-databaser til struktureret at organisere og handtere data i
projektet. Psycopg2-biblioteket bruges til at oprette tabeller, kare migreringer og sql-kommandoer og
handtere fejl. Med fa undtagelser, er ogsa SQLAlchemy anvendt til hurtig indleesning af data til de
eksperimentelle data science komponenter, der ikke bruges i produktion.

2.2. Udviklingsmiljger, athaengigheder og projektversionering

Projektet benytter Poetry til at handtere udviklingsmiljger, atheengigheder og projektversionering.
Poetry sikrer et ensartet setup pa tveers af udviklere ved automatisk at oprette virtuelle miljger, styre
pakkernes versioner og holder repositoriernes version opdateret via pyproject.toml og poetry.lock.
UC3-komponenten administreres i gjeblikket via et manuelt venv uden pyproject.toml; dokumentér
derfor, hvordan miljget aktiveres, inden man kgrer uvicorn.

2.3. Deployment

Projektet bruger Docker til containerisering af applikationerne og deres aftheengigheder. Feerdige
Docker-images bygges og skubbes til et Sonatype Nexus Registry, hvor de versioneres. Til
deployment anvendes Docker Compose, som henter de versionerede images fra Nexus og starter de
valgte services pa serveren.

Deployment handteres via de Docker Compose-filer, der falger med i service-repositorierne (fx talt-
forretning/Docker/docker-compose.yml, talt-ui/docker-compose.yml og
speechcomponent/docker/docker-compose.smoketest.yml). Nar nye versioner bygges og pushes til
Nexus, opdateres tags direkte i disse filer, og stakken startes lokalt eller pa serveren uden brug af
seerskilte test-/prod-repositorier.

N,

A s&% 9

) Aatborg foi 24, , AAR o

SYSTEMATIC {&% kommune eee oo

Gennt

Projekt TALT: Talegenkendelse og tekstklassifikation

3. Repositories

Kodebasen er opgjort af en raekke forskellige repositorier, se figur 1 for et overblik. | dette afsnit vil vi
gennemga hvert repositorie og kort beskrive formalet med dets kode.

Figur 1: Oversigt over projektets repositorier

Sundhedsfagligudredning

TALT-UI
//::' — - _“\\ f,#; ™y :T\\
[Erontend UC ﬂ Erontend U 02} | Klassﬁlkatlnns—APﬂ hOpsummerlngs—AF‘l
.9

L _ =
% /
Klassifikationsmodel:

S

A
Valideringsapp

[Froniend UC?] Mo Traening og evaluering Frontend
b / e
o
‘ Login [_ B i _ ~
\ ! Baseline scores LLM-judge
\ g i
i = \\.._ - f/
TALT-Forretning SharedComponents uce
7 AN (- <) £5 : N
en o 3ol Datamodeller | Journal parsing
o £ datagenerering i L N
' o . - - r B
Backenducs‘ tacho J - - |Opsummerings-
ideri | generator
L _ \Eahdenngsapp | Database- | > "
i B manager .
L Database- | _ y, | Evaluering |
migreringer
b il 4 b > & >

SpeechComponent Test- og prod-server-deployment
- - -~ " r h

(Talegenkendelses-APi} L Deploy test | | Deploy prod

L i) A >y

Hvert repositorie understgtter forskellige behov. De ydre kasser indikerer repositorier og de indre kasser indikerer
komponenter.

3.1 TALT-UI

Repositoriet indeholder alle komponenter og services tilhgrende frontenden af vores
afprgvningssystem. Det er en samlet frontend applikation, men med en mappestruktur, hvor
komponenterne tilhgrende hver use-case er separeret i egne mapper, ligesom
navigationskomponenten og loginkomponenten har faet egne mapper.

3NNy
A

systEmaric @hatore il s, 1AL o
Projekt TALT: Talegenkendelse og tekstklassifikation D iGmimthe £ O

3.2 TALT-Forretning

TALT-Forretning er projektets forretningslag, der star for at handtere kommunikationen til og fra
TALT-forretnings database samt opseetning og opdatering af databasen. Det er et RESTAPI, hvor
endpoint ruterne er opdelt i separate filer efter funktionalitet mens services, funktioner, datamodeller
og dataadgangslag er samlet i undermapper ud fra komponenten de understgtter; hhv. UC1, UC2,
UC3 og valideringsappen.

3.3 Sygeplejefaglig udredning
Her er samlet komponenter, som primeert er knyttet til den sygeplejefaglig udredning (UC1). Der er i
repositoriet placeret falgende komponenter med tilhgrende beskrivelse:

- Kategoriseringskomponenten
Kategoriseringskomponenten bestar af klassifikations-APl'et, og udviklingskoden, der star for at traene
og evaluere kategoriseringsmodellerne.

- Opsummeringskomponenten (forretningslag)
Her er APl'et til opsummering placeret sammen med alle ngdvendige funktionaliteter for at kunne
generere opsummeringer under afprgvning, heriblandt modelprompts.

- Valideringsapp
Frontenden til valideringsappen.

- Baseline
Evaluering af komponenterne for talegenkendelse, kategorisering og opsummering under test og
afprevning.

- LLM-judge
Indeholder LLM-judge brugt til at evaluere kvaliteten af UC1-opsummeringer.

3.4 UC2

UC2-repositoriet indeholder koden til klarggring af data og genereringen af opsummeringer til
afprgvning og evalueringen af afprgvningsresultaterne. Der er derfor placeret journal-parsing og
databasekode til at indlaese journaler fra Excel til databasen og selvsteendige notebooks til generering
af opsummeringer og evalueringen af afprgvningen.

3.5 Speechcomponent
Indeholder Fast-APl'et, der kan transskribere samtaler og tilhgrende services, der understgtter
processeringen og transskriberingen af lydfilerne.

3.6 SharedComponents
SharedComponents er stedet hvor moduler, der bruges pa tvaers af respositorier, er placeret. Det
drejer sig blandt andet om databasemanageren og datamodeller. Databasemanageren er et

3NNy,
“d>

sysTEmATIC @) B8abors, @ 1.1}

L~s KO#

o
Yennt

Projekt TALT: Talegenkendelse og tekstklassifikation

postgreSQL-databasemodul, der sgrger for connection, fetching af data og eksekvering af statements.
Datamodellerne bestar af Pydantic dataklasser brugt generelt i data science-komponenterne.

Modulet til generering af syntetisk data er ogsa placeret her, og er mappeopdelt efter typen af
datagenerering.

3.7 test-server-deployment og prod-server-deployment

To repositorier, der hver indeholder en docker-compose-fil til at kere afprgvningsklienten og
valideringsappen, og keres pa hhv test- og prod-serveren. De tidligere test-server-deployment og
prod-server-deployment repos er udfaset. Deployments udfgres nu via de Docker Compose-filer, som
ligger i de enkelte kodebaser (fx talt-ui/docker-compose.yml, talt-forretning/Docker/docker-
compose.yml, sundhedsfagligudredning/validation_app/docker/docker-compose.smoketest.yml).

sysTEmATIC @) 2avors ol w5z
Projekt TALT: Talegenkendelse og tekstklassifikation L) Kommune eee Nl

4. Opsaetning og brug kode

4.1 TALT Afprgvningsklient

Appen kegres lokalt ved at bygge og kere Docker-billederne for talt-ui, talt-forretning og databasen.
Dockerbillederne kan kgres samlet i et kald ved at kere docker-compose-filen pa talt-forretning.

For deployment til test-/prod-serveren, bygges og pushes Dockerbillederne med det rette tag (der
hentes fra versionscontrolleren i pyproject.toml pa de respektive repositories), som herefter zippes og
pushes til Nexus-serveren. Tags skal herefter opdateres i docker-compose filen til de nye versionstag,
hvorefter der logges ind pa test-/prod-serveren via SSH. Herfra hentes docker-billederne ned fra
Nexus og kgres med docker compose-filen lavet til det pagaeldende miljg. Der er lavet separate
docker-compose filer til hhv. test og produktion, sa der kan testes i testmiljget for deploy til
produktion, og vi kan spore os tilbage til tidligere versioner, hvis der opstar fejl.

TALT-afprgvningsklienten keres lokalt ved at bygge og kere dets Dockerbillede. Det kgres via Angular
CLl, installer afhaengighederne med npm install, starter udviklingsserveren med npm start, og bruger
npm run json-server hvis der er behov for mock-API-data. Docker/Compose-scripts kan fortsat bruges
til integrerede miljger, men er ikke pakraevet for lokal udvikling.

4.2 Valideringsklient

Valideringsklienten kgres lokalt ved at bygge og kere dets Dockerbillede. Det deployes pa test-/prod-
serveren efter samme fremgangsmade som afprgvningsklienten. Valideringsklienten
(sundhedsfagligudredning/validation_app) startes lokalt via poetry install efterfulgt af make build
start, eller via ./scripts/O0-build-local.sh der bygger og kerer Docker-containere. App’en kalder talt-
forretning-APl'et gennem httpx i src/app/utils/api_service.py.

4.3. Data generering
Datagenereringen er lavet som konfigurerbare Python-scripts, der ud fra konfigurationerne i
config.toml, genererer det gnskede data og skriver det til databasen.

Datagenereringen styres af scripts i sharedcomponents/generering_af_syntetiske_samtaler. Prompt-
metoder registreres via PROMPT_METHODS i prompt_methods.py, og hver metode kan veelges i
config.toml. Samtaler genereres ved hjeelp af Azure OpenAl (AzureOpenAl-klienten) med health
condition-data hentet via DataManager.

Genereringerne bygger pa promtps, der ligger samlet i en Python-klasse, og kombineret til forskellige
prompt-metoder i en tilsvarende python-klasse. Disse metoder bliver registreret i et dictionary med en
decorators, sd de er tilgeengelige under datagenereringen. Fra ens config-fil kan man derfra veelge
den gnskede prompt-metode, men ogsa andre konfigurationer skal veelges som fx leengden af en
onsket syntetisk samtale og antallet af helbredstilstande. Nar ens konfigurationer er valgt, kan Python-
filen der genererer og skriver til databasen eksekveres.

10

